
898 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004

Global Elimination Algorithm and Architecture Design for Fast Block Matching
Motion Estimation

Yu-Wen Huang, Shao-Yi Chien, Bing-Yu Hsieh, and Liang-Gee Chen

Abstract—This paper presents a new block matching motion
estimation algorithm and its VLSI architecture design. The pro-
posed global elimination algorithm (GEA) was derived from suc-
cessive elimination algorithm (SEA), which can skip unnecessary
sum of absolute difference (SAD) calculation by comparing min-
imum SAD with subsampled SAD (SSAD). Our basic idea is to
separate the decision of early termination and SAD calculation for
each candidate block to make data flow more regular and suitable
for hardware. In short, we first compare the rough characteristics
of all candidate blocks with the current block (SSAD). In turn, we
select several best roughly matched candidate blocks to re-com-
pare them with the current block by using detailed characteristics
(SAD). Other features of GEA include fixed processing cycles, no
initial guess, and high video quality (almost the same as full search).
Unlike other fast algorithms, the mapping of GEA to hardware is
very simple. We proposed an architecture that is composed of a
systolic part to efficiently compute SSAD, an adder tree to support
both SSAD and SAD calculations, and a comparator tree to avoid
expensive sorting circuits. Simulation results show that our design
is much more area efficient than many full-search architectures
while maintaining high video quality and processing capability.

Index Terms—Block matching, global elimination algorithm
(GEA), motion estimation (ME), successive elimination algorithm
(SEA).

I. INTRODUCTION

MOTION-COMPENSATED transform coding has been
adopted by all of the existing international standards

related to video coding, such as the ISO MPEG series [1]–[3]
and the ITU-T H.26x series [4]–[6]. Motion estimation (ME)
removes temporal redundancy within frames and, thus, pro-
vides coding systems with high compression ratio. Since an
ME module is usually the most computationally intensive part
in a typical video encoder (50%–90% of the entire system),
efficient implementation of ME is a must. A block matching
approach is mostly selected as the ME module in video codecs
and is adopted in the standards because of its simplicity and
good performance. Among all the block matching algorithms,
full-search block matching algorithm (FSBMA) is the most
popular but demands the most computation. Despite the huge

Manuscript received December 20, 2002; revised December 1, 2003. This
paper was recommended by Associate Editor R. Chandramouli.

Y.-W. Huang and L.-G. Chen are with the DSP/IC Design Laboratory,
Department of Electrical Engineering and Graduate Institute of Electronics
Engineering, National Taiwan University, Taiwan, 10617 R.O.C (e-mail:
yuwen@video.ee.ntu.edu.tw; lgchen@video.ee.ntu.edu.tw).

S.-Y. Chien was with the Graduate Institute of Electronics Engineering,
National Taiwan University, Taiwan 10617, R.O.C. He is now with Quanta
Computer Inc., Taoyuan, Taiwan, 10617 R.O.C. (e-mail: sherwin.chien@quan-
tatw.com).

B.-Y. Hsieh is with MediaTek Inc., Hsinchu, Taiwan, 10617 R.O.C. (e-mail:
BY_Hsieh@mtk.com.tw).

Digital Object Identifier 10.1109/TCSVT.2004.828321

computation, e.g., 9.3 giga operations per second (GOPS)
for CIF 30 Hz with search range, many parallel
and pipelined VLSI architecture designs for FSBMA have
been developed due to its regular data flow. In general, the
processing capability of one-dimensional (1-D) systolic arrays
is not high enough for real-time applications with large search
range or large frame size, so the operating frequency has to
be raised to hundreds of MHz. The processing capability of
two-dimensional (2-D) systolic arrays is very high, but the
number of processing elements (PE) is too large. As for the
tree architecture, the main problem is the huge memory access.
Thus, we decided to improve the ME design at the algorithmic
level.

Many fast algorithms have been proposed to save the huge
computation of FSBMA. One method is to reduce the search
positions, such as three-step search [7], new three-step search
[8], four-step search [9], 1-D full search [10], and diamond
search [11]–[13]. Another way is to simplify the matching
operations, such as pixel decimation [14], mini-max criterion
[15], boundary match [16], and pixel truncation [17]. Nev-
ertheless, these fast algorithms suffer for considerable peak
signal-to-noise ratio (PSNR) degradation compared to FSBMA,
especially when the motion field is large and complex.

Recently, fast full-search block matching algorithms, such as
successive elimination algorithm (SEA) [18]–[20], partial dis-
tortion elimination (PDE) [21], and winner-update algorithm
[22], have come into notice for their capabilities to reduce the
heavy computation of FSBMA and to maintain the same results
as FSBMA simultaneously. However, they were not developed
with hardware considerations and are only suitable for software
implementation. SEA avoids unnecessary sum of absolute dif-
ference (SAD) calculations by comparing an up-to-date min-
imum SAD with the absolute difference between the sum of
pixels in current block and sum of pixels in candidate block,
or namely subsampled SAD (SSAD). The total execution time
will be reduced if many SAD calculations are skipped. Hence,
it is critical for SEA to find good initial guesses of motion vec-
tors (MVs) with smaller SADs in the early stage to increase the
skipping ratio, but this is a difficult task for the regions where the
motion field is not smooth. Moreover, the irregular data flow of
SEA makes the systolic mapping to hardware a very tough task.

In this paper, we modified the SEA and proposed a new
block matching algorithm called global elimination algorithm
(GEA). In contrast to SEA, the conditional branch when a
candidate block cannot satisfy the criterion of early termination
is removed, the data flow is more regular, the processing
cycles are fixed, and no initial guess is needed. Experimental
results show that GEA can achieve almost the same results as
FSBMA. Furthermore, the most important feature of GEA is

1051-8215/04$20.00 © 2004 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004 899

that it is very easy to design. We also proposed an efficient
VLSI architecture design for GEA. The core consists of a
systolic part, a parallel adder tree, and a parallel comparator
tree. Compared to many existing FSBMA architectures, our
design is much more area-efficient.

The rest of the paper will be organized as follows. In Sec-
tion II, we will review SEA and describe our GEA. Next, our
GEA architecture will be presented in Section III. Section IV
is the comparison of our design and FSBMA architectures. Fi-
nally, Section V gives a conclusion.

II. ALGORITHMS

Usually, the block matching process is performed only on the
luminance frame. Each luminance frame is divided into blocks
of size , and each block in the current frame is matched
with candidate blocks of size within the search area in
the reference frame. The best matched block has the lowest SAD
among all of the candidate blocks. Instead of the original block,
the displacement (motion vector) of the best matched block and
the prediction residue will be transmitted to the decoder.

A. Full-Search Block Matching Algorithm

FSBMA can be described by the following equations:

(1)

(2)

where denotes the SAD at search position
is in the range of

means current block data,
stands

for search area data, the block size is , the search range
is , and expresses the motion vector of current
block with minimum SAD among search positions.

B. SEA

The main idea of SEA [18] can be shown in the following
inequality:

where , and

. To compute sea is much
easier than to compute SAD due to the fact that is the sum
of pixels in current block and only has to be calculated one
time, and the sum of pixels in candidate block at

Fig. 1. Flowchart of SEA.

search position can be derived from the previous value
of as follows:

(3)

If is larger than current minimum SAD, denoted by
, it is guaranteed by inequality (3) that will

be larger than , and, thus, the search position
can be skipped. Otherwise, still needs to be calcu-
lated and compared with . It is clear that a good initial
guess of MV with small SAD is critical for SEA to increase the
skipping ratio. Therefore, it is common to further speed up SEA
with the use of MV predictors or spiral scan order of search po-
sitions. The flowchart of SEA is summarized in Fig. 1. A con-
ditional branch exists after sea calculation for each search po-
sition, which makes the data flow irregular and unfavorable for
hardware.

Another faster way to compute is the frame-based
method stated in [22]. An example with is shown in
Fig. 2. The first step is the horizontal scanning process on the
original image, as shown in Fig. 2(a). A window of length is
placed at each position by raster scan order. The pixels in the
window are summed, and the result is stored in the horizontally
scanned image. Besides, efficient reuse of the previous result
can be easily achieved, as shown in Fig. 2(b). The second step is
the vertical scanning process on the horizontally scanned image,
as shown in Fig. 2(c). The process is similar to the horizontal
scanning, and the result is stored in the vertically scanned image.

900 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004

Fig. 2. Illustration of frame-based calculation for sum of 4� 4 candidate block, SB(m;n). (a) Horizontal scanning process. (b) Example of data reuse for a row.
(c) Vertical scanning process. (d) Marked pixel in the 2-D scanned image is equal to sum of pixels in the 4� 4 block (painted in gray) in the original image.

Eventually, each intensity value in the 2-D scanned image cor-
responds to the sum of pixels in a block of size , as illus-
trated in Fig. 2(d). Although the frame-based method is much
faster, it requires a frame memory and is not suitable for
hardware.

C. Multilevel SEA

Multilevel SEA (MSEA) [19], [20] changes the value in
Fig. 1 to value. Let us modify inequality (3) to form the
following inequality:

(4)

In inequality (4), a block of size is divided into
nonoverlapping subblocks, is the sum of the th subblock
in current block, and is the sum of the th subblock
in candidate block at search position . For each search
position, is calculated to decide if the SAD calcu-
lation can be skipped or not. When is reduced
to and is called at level 1. If the subblocks are of the
same size and it is called at level
respectively. Fig. 3 illustrates at level 3 with . In
general, the skipping ratio of MSEA is higher than that of SEA,

Fig. 3. Illustration of msea at level 3 with N = 16.

but to get the value requires more computation than sea.
In fact, both and can be regarded as SAD with reduced
number of pixels. There is only one “macro-pixel” in a mac-
roblock for SEA. For and MSEA at level 3, there are
sixteen “macro-pixels” in a macroblock. In the rest of this paper,
we denote and as SSAD . For
with denotes , and SSAD with is ex-
actly the same as SAD.

D. GEA

The data flow of SEA or MSEA is not regular due to
the conditional branches after SSAD calculation to deter-
mine the skipping process. This makes hardware design a
tough task. Furthermore, when true MVs are beyond the
search range, good initial guesses can never be found, and
the skipping ratio could be so low that the processing time
of SEA or MSEA is even longer than that of FSBMA. In

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004 901

Fig. 4. Flowchart of GEA.

our GEA, these problems can be solved. The steps of GEA
are shown in Fig. 4 and can be described in (5). Note that

denotes the sorted result of .

(5)

Global elimination of search positions, which is described by
step 2), is done after all SSAD values are calculated. No condi-
tional branch is required within the calculation of SSAD at every
search position. Consequently, the control of GEA is easier than
SEA or MSEA. The result of GEA will be the same as FSBMA
when the SSAD of the search position at which the smallest
SAD is located is smaller than . Therefore, larger
makes the results more reliable while smaller saves more
computation. Generally speaking, the parameter provides an
easy tradeoff between speed and coding gain. No matter what
will be, the processing cycles can be fixed as long as is de-
termined, which is also a good feature for hardware scheduling.
Moreover, the processing speed is independent of scan order.
Raster scan, which is easier to implement than spiral scan, can
be chosen for GEA without sacrifice of processing speed.

We use different values of and under two typical
cases. The first case has the following parameters: ,
QCIF frame size search range. The
parameters of the second case are , CIF frame size

search range. The results of Stefan are
shown in Table I. As you can see, if we increase and
step by step, the video quality will become better and better.
However, the improvement of video quality by increasing
and will stop when the video quality is already very close
to full search. Further increase in and may result in
waste of computation. According to our experiments, we sug-
gest to choose and for QCIF and CIF size
images.

E. Comparison and Analysis

After and are selected, we compare GEA to
FSBMA. Many standard sequences were tested. The results are
shown in Table II. The average PSNR of motion compensated
frames obtained by GEA is very close to FSBMA. Sometimes,
GEA even results in a little higher PSNR values. Note that

TABLE I
AVERAGE PSNR OF COMPENSATED FRAMES IN DB AND STEFAN

TABLE II
AVERAGE PSNR OF COMPENSATED FRAMES IN DB

AND THE PERCENTAGE OF SAME MVs

minimum SAD does not always lead to minimum mean square
error, e.g., , but . The maximum
PSNR drop is only 0.08 dB (Hall monitor in Case II). The
percentages of the same MVs found by both GEA and FSBMA
are also listed. It is shown that GEA and FSBMA usually
produce the same MVs. For Hall monitor and Stefan in Case

902 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004

Fig. 5. PSNR versus frame. (a) Hall monitor in Case II. (b) Stefan in Case II.

TABLE III
RUNTIME OF VARIOUS ME ALGORITHMS IN MILLISECONDS

II, the moving objects are small, and the motion is large and
complex, which leads to lower percentages of the same MVs.
Even so, the PSNR drop is still insignificant, as shown in Fig. 5.
Therefore, we claim that although GEA does not guarantee the
same results as FSBMA, GEA is very reliable.

Table III summarizes the runtime profiles of various ME al-
gorithms. Except for GEA and Diamond, all the other fast al-

gorithms are categorized as the fast full search, but note that
GEA produces almost the same results while Diamond search
suffers considerable PSNR degradation. The platform is a per-
sonal computer with 866-MHz CPU, and the program codes
are written in C . The speed of GEA is about the same as
MSEA and is significantly faster than other fast full-search al-
gorithms. Note that spiral scan of search positions is adopted for
(M)SEA and PDE to achieve such fast speeds, while GEA uses
raster scan. Besides, the speed of MSEA varies a lot for different
scenes. For example, MSEA is faster than GEA on average.
However, when the motion field is large and complex, e.g., in
Stefan, the skipping ratio of MSEA is not high enough to de-
feat GEA. Diamond search, which is recommended by MPEG-4
due to its average good performance, is four times faster than
GEA. However, it cannot guarantee the video quality. The PSNR
drops of GEA compared to FSBMA are only 0, 0.01, 0.04,
and 0.01 dB for the four listed sequences in Table III, respec-
tively. As for Diamond search, the drops are 0.04, 0.49, 1.29,
and 0.43 dB, which may cause up to 30% of increase in bit rate.

In sum, GEA regularizes the data flow of SEA by moving
the SAD calculations behind all SSAD calculations. No initial
guess or special scan order is required. The processing cycles
are fixed. It is easy to make a tradeoff between the processing
speed and the video quality by adjusting the value of . GEA
can produce almost the same results as FSBMA, and the speed
of software implementation is about the same as spiral MSEA.
Most important of all, the hardware mapping of GEA is very
simple. We will show this in the next section.

III. ARCHITECTURE DESIGN BASED ON GEA

We will choose , and
as an example to explain our architecture. The core of our
architecture can be divided into three main parts: the systolic
part, the parallel adder tree, and the parallel comparator tree.

A. Systolic Part

The data flow of the systolic part, which is to calculate the
sum of pixels in a 4 4 subblock, is shown in Fig. 6. Note that

and denotes and in (1), respectively, and
the rectangles stand for shift registers. A column of block data
is loaded in parallel at each clock cycle, denoted by . When

data are loaded. The sum of pixels of each sub-
block in current block, depicted as in Fig. 3,
is computed in parallel at and stored into registers.
Next, data are loaded column by column. When – ,

data of search positions – are loaded,
the sum of pixels of each subblock in candidate block, denoted
as in Fig. 3, will be available at – for
search positions – , respectively. Then,
columns of data for search positions –
are loaded in parallel at – and vice versa. Thus, it
takes clock cycles for a macroblock to
load all the data into the systolic part.

B. Parallel Adder Tree

The first purpose of the parallel adder tree is to com-
pute SSAD. In Fig. 7, ADxx takes charge of the computa-

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004 903

Fig. 6. Data flow of systolic part. Columns of block data are loaded in parallel, and the sums of subblocks sum –sum are computed in parallel as well.

Fig. 7. Parallel adder tree calculates the SSAD(msea) value shown in Fig. 3. It can be reused to compute SAD of the M candidate blocks having smallest
SSADs.

tion of absolute difference between and de-
noted in Fig. 3. The parallel adder tree adds the results from
AD00–AD33 and outputs SSAD value. The second purpose is
to compute SAD after the candidate blocks have been found
by the parallel comparator tree, which will be described in the
next subsection. SAD of 16 pixels can be calculated in one
clock cycle, and the partial results are accumulated in another
register. Thus, it requires clock cycles to compute the SAD
of a candidate block.

C. Parallel Comparator Tree

The objective of parallel comparator tree is to find the
search positions that have the smallest SSAD values. The idea
is to save the up-to-date smallest SSAD values and their cor-
responding MVs in the registers. In turn, we compare the new
coming SSAD of the next search position with the stored
values and find the maximum among them. If the new coming
SSAD is larger than the stored values, nothing will happen. If
the maximum is one of the stored SSAD values, the largest one

and its corresponding MV will be replaced by the new SSAD
and the new MV. If more than one of the stored SSAD values
are equal to the maximum, only one of them and its MV will
be replaced. In this way, we do not need sorting circuits, which
is very expensive in chip area, to find the smallest SSAD
values.

The comparator tree is divided into a forward part, as shown
in Fig. 8(a), and two feedback parts, as shown in Fig. 8(b) and
(c). Note that the symbols with “ reg” are registers. In Fig. 8(a),
SSAD1 reg-SSAD7 reg should be properly initialized as
0xFFFF before the first valid value comes from parallel
adder tree to SSAD in reg. The maximum value among the
eight values, denoted as , is computed
by the forward part. In Fig. 8(b), EQUx compares whether
SSADx reg equals to or not. If SSADx reg equals
to , EQUx will be activated; otherwise, it will be
inactivated. The CHECK module functions as follows. If no
EQU is active, no will be active. If only one EQUx
is active, only the will be active. If more than one

904 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004

Fig. 8. Parallel comparator tree. (a) Forward part to compute SSAD max. (b) One feedback part to find the target SSADx reg that will be replaced. (c) The
other feedback part to replace the SSADx reg and mvx reg with SSAD in reg and mv in reg, respectively.

EQU units are active, only one of the corresponding
signal can be activated. For instance, when EQU1 and EQU2
are both active, only replace1 will be activated. In Fig. 8(c), if

is active, SSADx reg and mvx reg will be replaced
by the current values in SSAD in reg and mv in reg, respec-
tively. Moreover, as shown in Fig. 6, invalid values

are generated periodically during the first cycles of
loading data on every row of the search positions. At these
cycles, the s inputted to the parallel comparator tree
must be replaced by 0xFFFF. In sum, the parallel comparator
tree is to keep the smallest values and their MVs in
SSADx reg and mvx reg registers, respectively.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004 905

Fig. 9. Overall architecture design for GEA.

TABLE IV
COMPARISON OF VARIOUS ME ARCHITECTURES WITH N = 16; p = 16;Level = 3, and M = 7

D. Overall Architecture Design

Fig. 9 presents the block diagram of the complete GEA archi-
tecture. Besides the three core modules mentioned above (SYS-
TOLIC PART, SAD TREE, and COMPARE TREE), there are
still some control circuits (CONTROL UNIT, MUX, and MUX
NETWORK) and memory modules to store current block
data and search area data. Note that the solid arrows denote the
data signals, and the dotted arrows denote the control signals.
In order to output a column of block data in parallel, 16 on-chip
SRAM modules are required.

In brief, the architecture design of GEA is very simple. The
proposed hardware requires clock cycles
to find the search positions with the smallest values,
and clock cycles are needed for the SAD calculation of the

candidate blocks. Therefore, our GEA architecture in total
spends clock cycles to obtain the
MV of a macroblock. If we want to eliminate the bubble cycles
of SSAD calculations during the beginning cycles at
change of rows, we can use ping-pong mode systolic registers
to store sums of 1 4 pixels. In this way, 32 on-chip SRAM
modules are required to output the 32 pixels in parallel, and the

number of total cycles required for a macroblock is reduced to
.

IV. ARCHITECTURE COMPARISON, DISCUSSIONS, AND

CHIP IMPLEMENTATION

A. Comparison Between GEA Architecture and FSBMA
Architectures

In this subsection, we compare our design with many archi-
tectures based on FSBMA. The results of two typical cases are
shown in Tables IV and V. Only the PE arrays of the FSBMA ar-
chitectures were implemented for comparison because the con-
trol unit only occupies a very small part of the whole design. In
Tables IV and V, architectures labeled with “*” symbol need
many additional shift registers to reuse data, but these regis-
ters were not implemented. The real gate counts of these de-
signs would be higher than the reported results. As for our GEA
architecture, all the parts in Fig. 9 except for RAM modules
were included in the simulation. Note that all designs have to
save current block data and search area data, so the required
number of bits for on-chip SRAM is the same for all designs.

906 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004

TABLE V
COMPARISON OF VARIOUS ME ARCHITECTURES WITH N = 16; p = 32;Level = 3, AND M = 7

The VLSI circuits were described in Verilog HDL and synthe-
sized by SYNOPSYS Design Analyzer using AVANT! 0.35-
m cell library. In order to be fair, the comparison was made
under the same throughput of MVs (number of estimated MVs
per second). Consequently, we first estimated the required op-
erating frequency of each architecture for the real-time applica-
tion of 30 CIF f/s. In turn, proper pipeline registers were added
and the critical path constraints were set to just meet the target
speeds.

In general, the processing capability of the 1-D arrays is not
high enough. The operating frequency for applications with
large frame size and large search range has to be substantially
increased to an unacceptable extent. The processing capability
of the 2-D arrays is very high, but the enormous gate count
makes them expensive. The architecture in [28] belongs to 1-D
array, but it adopts data interlacing and 2-D data reuse, which
also requires too large of an area. The tree architecture has
good performance in area and speed, but the required memory
bit width is too large, which is not feasible. As for the proposed
GEA architecture, the processing speed is only a little slower
than 2-D arrays, but the gate count of GEA is much smaller.
The 2-D array architecture in [25] is even slower than ours.
The processing capabilities of the 1-D arrays are much lower
than that of GEA, and the gate count of the architecture in [23]
is even larger than that of GEA. Therefore, GEA has superior
area–speed performance than FSBMA architectures.

B. Chip Implementation

The proposed GEA architecture was verified by the VLSI
implementation. The target speed of the chip is real-time pro-
cessing for 30 CIF or 120 QCIF f/s with block of size

search range, , and . If the
ME module constantly access the external memory of the video
coding system, the system bus will become too busy. So we
use on-chip SRAM to store current block data and search area
data. The amount of the external memory access can be signifi-
cantly reduced in this way, although the ME module needs some
extra clock cycles to load the data. Data reuse of overlapped
search area between horizontally adjacent macroblocks is also
adopted to reduce the loading cycles. The required working fre-
quency is 21.2016 MHz. The chip photo is shown in Fig. 10.

Fig. 10. Chip photo.

TABLE VI
CHIP SPECIFICATIONS

We store search area data in 16 144 8-SRAM modules, as
the RAM00–RAM15 organized in Fig. 9. Four 16 32-SRAM
modules controlled by the same address generator are used to
store current block data. According to testing results, the chip
works well for all test patterns, and the maximum working fre-
quency is 27.8 MHz, which is high enough to support MPEG-4
Simple Profile Level 3 (CIF 30 Hz). The other chip specifica-
tions are shown in Table VI. Because of the fixed processing
cycles, low requirement of bandwidth on system bus, low gate
count, high processing capability, and high video quality, our
design is a good silicon IP core and can be easily integrated in
video coding systems.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004 907

V. CONCLUSION

We proposed GEA and its architecture design for fast block
matching ME. Our algorithm can solve several problems en-
countered by SEA. The main concept is to first roughly com-
pare candidate blocks with current block, and then to precisely
compare the best roughly matched candidate blocks with cur-
rent block. Unlike other fast algorithms, GEA is hardware
oriented. No initial guess or special scan order of search posi-
tions is required, the data flow is regular, the processing cycles
are fixed, and the motion-compensated results are almost the
same as those obtained by the FSBMA. We also proposed a
VLSI architecture for GEA. It mainly includes a systolic part,
a parallel adder tree, and a parallel comparator tree. For typ-
ical applications, the area–speed performance of our design
is much better than many existing architectures based on the
FSBMA.

ACKNOWLEDGMENT

The authors would like to thank Dr. T.-C. Wang and
W.-M. Chao for discussion and many valuable suggestions.

REFERENCES

[1] Information Technology—Coding of Moving Pictures and Associated
Audio for Digital Storage Media at up to About 1.5 Mbit/s—Part II:
Video, ISO/IEC 11 172-2, 1993.

[2] Information Technology—Generic Coding of Moving Pictures and As-
sociated Audio Information: Video, ISO/IEC 13 818-2 and ITU-T Rec-
ommendation H.262, 1996.

[3] Information Technology—Coding of Audio-Visual Objects—Part 2: Vi-
sual, ISO/IEC 14 496-2, 1999.

[4] Video Codec for Audiovisual Services at p� 64 Kbit/s, ITU-T Recom-
mendation H.261, Mar. 1993.

[5] Video Coding for Low Bit Rate Communication, ITU-T Recommenda-
tion H.263, Feb. 1998.

[6] Draft ITU-T Recommendation and Final Draft International Standard of
Joint Video Specification, ITU-T Recommendation H.264 and ISO/IEC
14 496-10 AVC, Joint Video Team, May 2003.

[7] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion
compensated interframe coding for video conferencing,” in Proc. Nat.
Telecommunications Conf., 1981, pp. C9.6.1–C9.6.5.

[8] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 4, pp. 438–442, Aug. 1994.

[9] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 6, pp. 313–317, June 1996.

[10] M. J. Chen, L. G. Chen, and T. D. Chiueh, “One-dimensional full search
motion estimation algorithm for video coding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 4, pp. 504–509, June 1994.

[11] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block
matching motion estimation,” IEEE Trans. Image Processing, vol. 9, pp.
287–290, Feb. 2000.

[12] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A novel
unrestricted center-biased diamond search algorithm for block motion
estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, pp.
369–377, Aug. 1998.

[13] A. M. Tourapis, O. C. Au, M. L. Liou, G. Shen, and I. Ahmad,
“Optimizing the MPEG-4 encoder—Advanced diamond zonal search,”
in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’00), 2000, pp.
674–677.

[14] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block
motion vectors,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, pp.
148–157, Apr. 1993.

[15] M. J. Chen, L. G. Chen, T. D. Chiueh, and Y. P. Lee, “A new block
matching criterion for motion estimation and its implementation,” IEEE
Trans. Circuits Syst. Video Technol., vol. 5, pp. 231–236, June 1995.

[16] M. J. Chen, “Predictive motion estimation algorithms for video com-
pression,” J. St. John’s & St. Mary Inst. Technol., vol. 15, pp. 197–214,
June 1997.

[17] Z. L. He, C. Y. Tsui, K. K. Chan, and M. L. Liou, “Low-power VLSI de-
sign for motion estimation using adaptive pixel truncation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 10, pp. 669–678, Aug. 2000.

[18] W. Li and E. Salari, “Successive elimination algorithm for motion esti-
mation,” IEEE Trans. Image Processing, vol. 4, pp. 105–107, Jan. 1995.

[19] X. Q. Gao, C. J. Duanmu, and C. R. Zou, “A multilevel successive elim-
ination algorithm for block matching motion estimation,” IEEE Trans.
Image Processing, vol. 9, pp. 501–504, Mar. 2000.

[20] M. Brünig and W. Niehsen, “Fast full-search block matching,” IEEE
Trans. Circuits Syst. Video Technol., vol. 11, pp. 241–247, Feb. 2001.

[21] Digital Video Coding Group, ITU-T Recommendation H.263 Software
Implementation, Telenor R&D, 1995.

[22] Y. S. Chen, Y. P. Huang, and C. S. Fuh, “Fast block matching algorithm
based on the winner-update strategy,” IEEE Trans. Image Processing,
vol. 10, pp. 1212–1222, Aug. 2001.

[23] K. M. Yang, M. T. Sun, and L. Wu, “A family of VLSI designs for the
motion compensation block matching algorithm,” IEEE Trans. Circuits
Syst., vol. 36, pp. 1317–1325, Oct. 1989.

[24] T. Komarek and P. Pirsch, “Array architectures for block matching algo-
rithms,” IEEE Trans. Circuits Syst., vol. 36, pp. 1301–1308, Oct. 1989.

[25] C. H. Hsieh and T. P. Lin, “VLSI architecture for block matching motion
estimation algorithm,” IEEE Trans. Circuits Syst. Video Technol., vol. 2,
pp. 169–175, June 1992.

[26] Y. S. Jehng, L. G. Chen, and T. D. Chiueh, “An efficient and simple
VLSI tree architecture for motion estimation algorithms,” IEEE Trans.
Signal Processing, vol. 41, pp. 889–900, Feb. 1993.

[27] H. Yeo and Y. H. Hu, “A novel modular systolic array architecture for
full-search block matching motion estimation,” IEEE Trans. Circuits
Syst. Video Technol., vol. 5, pp. 407–416, Oct. 1995.

[28] Y. K. Lai and L. G. Chen, “A data-interlacing architecture with two-
dimensional data-reuse for full-search block matching algorithm,” IEEE
Trans. Circuits Syst. Video Technol., vol. 8, pp. 124–127, Apr. 1998.

[29] Y. H. Yeh and C. Y. Lee, “Cost-effective VLSI architectures and buffer
size optimization for full-search block matching algorithms,” IEEE
Trans. VLSI Syst., vol. 7, pp. 345–358, Sept. 1999.

